
Programming Model 3

Introduction

Objectives
At the end of this lab you should be able to:

 Explain how common program variables are stored

 Distinguish between different types of high-level program
statements

 Understand low-level code corresponding to program
statements

 Explain how program subroutines work

 Use the simulator to create user interrupts

Processor (CPU) Simulators
The computer architecture tutorials are supported by simulators, which
are created to underpin theoretical concepts normally covered during
the lectures. The simulators provide visual and animated
representation of mechanisms involved and enable the students to
observe the hidden inner workings of systems, which would be difficult
or impossible to do otherwise. The added advantage of using
simulators is that they allow the students to experiment and explore
different technological aspects of systems without having to install and
configure the real systems.

Basic Theory
High-level language (HLL) programs are made of variables holding
data values and multiple program statements as algorithms. These
statements often control the flow of program execution under certain
conditions. Calls to subroutines and interrupts all change the sequential
flow of a program execution without which feature programs would not
do any useful work.

Simulator Details
This section includes some basic information on the simulator, which
should enable the students to use the simulator. The tutor(s) will be
available to help anyone experiencing difficulty in using the simulator.

The simulator for this lab is an application running on a PC and is
composed of multiple windows.

1

Image 1 - Main simulator window

The main window shown in Image 1 is composed of several sub-views, which
represent different functional parts of the simulated processor. For this lab
session we are interested only in the compiler part of the simulator.

In order to access the compiler, click on the
COMPILER… button as shown in Image 2
on the right. The compiler window shown in
Image 3 below will show.

Image 2 - Advanced functions

2

Image 3 - The main compiler window

In the compiler window there are three main sub-windows

 Program Source - all high-level source statements appear here.

 Compiler Progress - information on the progress of a compilation
appear here.

 Program Code - assembly code generated by the compiler appear
here.

Lab Exercises - Investigate and Explore
The lab exercises are a series of experiments, which are attempted by
the students under guidelines. The students are expected to carry out
further investigations on their own in order to form a better
understanding of the technology.

Now, have a go at the following activities:

1. Enter the following source code and compile it.

3

program Test1
 var IntVar integer
 var BoolVar boolean
 var StrVar1 string (5)
 var StrVar2 string(20)

 IntVar = 6
 BoolVar = true
 StrVar1 = "Hello"
 StrVar2 = "And again"

end

Now click on the SYMBOL TABLE… button. The Symbol Table
window will show. Observe the kind of information kept in the symbol
table. Make a note of the type, size and address fields for each of the
entries in the table.

Next, load the compiled program in memory. In the CPU simulator
window click on the SHOW PROG MEMORY… button. The contents of
the program data memory will show. Make sure it stays on top. Then
run the program at maximum speed. Observe the contents of the
memory paying attention to the address locations you noted before.

2. Enter the following source statements

Program Test2

n = 0
i = n + 1
p = i * 3
writeln (“ n=”, n, ” i=”, i, ” p=”, p)

 end

Compile the above program. Now observe the code generated in the
PROGRAM CODE window. You don’t need to analyse it in detail.
However, count the number of jump instructions (i.e. those that start
with a letter ‘J’) and note this down. Can you tell what kind of program
statements this program is using?

3. Enter the following source statements

Program Test3

n = 0
if n < 5 then
 p = p + 1
end if

 end

4

Compile the above program. Now observe the code generated. How
many jump instructions are there? What do you think is the purpose of
the jump instruction in this code? What kind of a statement is an ‘if’
statement?

4. Enter the following source statements

program Test4
 p = 1
 for n = 1 to 10
 p = p * 2
 next
end

Compile the above program. Now observe the code generated. How
many jump instructions are there? What do you think is the purpose of
each of the jump instructions in this code? What kind of a statement is
a ‘for’ statement? Can you think of another statement of this kind (you
can give an example from any programming language you are familiar
with)?

5. Enter the following source statements

Program Test5
 sub One
 writeln(“I am sub One”)
 end sub

 sub Two
 call One
 writeln(“I am sub Two”)
 end sub

 call Two
End

Compile the above program. Next, load the compiled program in
memory. In the CPU simulator window click on the SHOW PROG
MEMORY… button. Click on the SHOW PIPELINE… button and check
the checkbox labelled No instruction pipeline. Close the window. In
the CPU simulator window do the following

Click on the RESET button in PROGRAM LIST frame. Now you’ll
manually execute this program instruction by instruction. To do this
double-click the currently highlighted instruction. So, you’ll start with the
MSF instruction, and then do the CAL instruction, etc. As you execute
the program in this manner, make the following observations: make a

5

6

note of the PROGRAM STACK frame contents after executing a CAL
instruction or a RET instruction. Keep executing instructions until you
reach the HLT instruction.

Can you explain what is happening each time a CAL or a RET
instruction is executed and how they affect the PROGRAM STACK
contents.

6. Enter the following source statements

program Test6
 sub Any
 n = 0
 end sub

 sub MeToo intr 5
 writeln(“Me too, me too!”)
 end sub

 do
 loop
end

Compile the above program. Look at the code generated. What
address does subroutine “MeToo” start at? Make a note of this number.
Next, load the compiled program in memory. In the CPU simulator
window click on the INTERRUPTS… button. The Interrupts window
will show. Make a note of the interrupt number against which a number
appears in the corresponding box. Do these numbers mean anything to
you? Explain.

Make sure the Interrupts window stays on top. Click on the
INPUT/OUTPUT… button and make sure the Console window also
stays on top. Now slide the speed of the CPU simulator to the fastest
speed and run the program. Make a note of what you are observing.
What is the main purpose of the “do” loop statement in this program?

Next, click on the TRIGGER button in the Interrupts window while at
the same time you keep your eye on the Console window. Make a
note of what you are observing.

Slow down the CPU simulation (e.g. a little above half way on the
sliding scale). Trigger the interrupt and observe the PROGRAM
STACK contents. You can click on the STOP button as soon as you
see numbers appearing on this stack so that you have time to look at
its contents. What do you observe?
There are two main types of interrupts: vectored and polled. Which
type is the above interrupt? Explain.

